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FOREWORD

This is a final report on the analysis of the Harpoon missile shock
response to the various pyrotechnic events that will occur during a
uwission., The work, authorized by AIRTASK AO5P=204/2162/6000/00C00

issued by the Naval Air Systems Command, was performed from July 1973 to
July 1979,

In the interest of economy and timeliness in presenting the
information, the report is being published as originally submitted
except for minor (typographical) changes to the text, formatting

to RWC technie.: publication style, and preparation of the figures for .
reproduction, )

This re

port has been reviewed for technical accuracy by William J,
Werback.

Approved by

Under authority of
D. J. RUSSELL, Head

W. B. HAFF
Engineering Department Capt., U. S. Navy
15 August 1979 Commander

Released for publication by
R. M. HILLYER
Technical Direector

NWC Technical Publication 6133

Published by , . ., , . ¢+ ¢ ¢ o ¢+ . Technical Information Lepartment
Collation . . . ..., ., .... ** e s e ..« Cover, 18 leaves
First printiag . . . . . . ** s s s s e e e+ 200 unnumbered copies
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1. INTKODUCTION

In its launch-to-target sequence, the Harpoon weapon involves the use of
numerous ordnance activated components such as Marman clamps, pin pullers,
engine start cartridges and igniters, gquick activated batteries, ordnance
activated valves, and ejection launchers. Most of these components are sup-
plied as off-the-shelf items, although several are of special design. These
types of components have characteristically generated high frequency shocks
which have often proved detrimental to other equipment mounted in the general
arca of the crdnance device. Prediction of this type of shock must be based

mainly on empirical results because, to date, no analytical method of pre-
diction has proven successful.

The purpose of this study was to predict the shock enviromments generated
from the devices listed above and to discuss the pyrotechnic shock phenom-
enon, failures encountered in this environment, and test techniques and
apparatus required to ensure the proper simulation of the pyrotechnic shock
environment. Shock environment prediction involved a literature search to
find test data which could be used as a baseline, and an enveloping of the

data to form a representative band. The predicted envelopes for the various
devices are presented in Section 2,

Information for Section 3, covering test techniques and apparatus, was ob-

tained from various technical papers and from past experience with pyrotechnic

shock. The "state of the art" in pyrotechnic environmental simulation is

changing rapidly; therefore, the material presented in Section 3 reflects
current practice.

2, SHOCK SPECTRA PREDICTIONS

The types of devices delineated in Section 1, Introduction, have been

used on, and tested for, numerous vehicle applications, including Farpoon.
Tests to determine the shock levels they produce have been conducted by

most aerospace companies. Unfortunately, because of the many types, sizes,
and configurations, locating data which are applicable to a particular com-
ponent becomes a difficult task. In many instances, information cculd

not be obtained regarding the exact type of component to be considered, the
type of structure it was mounted on, and details of the mounting configuraticn.

Fortunately, the shock levels generated by the devices under discussion
fall into distinct classes. Thus, by grouping the components into par-
ticular classes and by gathering generally available information from other
components which fali into these same classes, it was possible to predict
the shock levels that will be generated by the devices.
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Tke following general arproach was used to predict shock environments.

Step 1. Group the devices into categories for whi.a shock levels are
similar and for which empirical data are availatle,

.
(2t ¢ ued VI

Step 2. Perform a literature search for test papers and reports
published by the military and aerospace companies to obtain

data applicable to the ordnance devices which fall into the d
categories defined in Step 1. )

Step 3 Review the literature found in Step 2 and specifically choose )
data that were obtained 5 to 10 inches (127 to 254 mm) from the i
ordnance device. Selection of data taken this close to the sour- -
will minimize errors arising from structural response, distance :
and joint attenuatioi, etc.

Step 4 Envelope applicable data found in Step 3 for each of the g
categories defined in Step 1i. E

The exact prediction technique for each device is delineaied in the following 3
paragraphs. Predictions are presented in shock spectra format. The spectra ;
shown are maximax spectra (envelopes of positive and negative spectra) and, :
except as otherwvise noted, were generated using 5% damping (magnification

factor Q=10). The spectral envelopes presented represent the predicted 2
environment on the mounting structure 5 to 10 inches (127 to 254 wm) from the 3
explosive device. Attenuation across the component mounting interface is the ;
only loss considered. P

2.1 BOOSTER CLAMP RING

This device was described as being typical of the Marman clamp design, using
two 1/2-inch (12.7-mm) explosive bolts. Data compiled from References 1, 2, and
3 were used to form the curves shown in Figure 1. These curves, obtained fzom
six independent tests, represent the maximum spectra generated from accelero-
meter outputs located 5 to 10 inches (127 to 254 mm) from the clamp. It is
predicted that the spectra levels generated by the Harpoon booster clamp

ring will lie within the envelope of the curves shown in Figure 1.

2.2 BATTERIES

The batteries were described as the quick activated type made by Eagle- ;
Picher. Typically, an initfator ignites a gas generator and the pressurized :
gas ruptures a burst disc and pushes the electrolyte into the cells.

A battery of this type was used on the UpSTAGE Experiment.4 An accelera-
tion history obtained from its activation is shown in Reference 5. No

TELCREINT PV
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NWC TP 6133

shock spectra plots of the transient were available so spectra from tran-
-ients of similar magnitude and frequencies were plotted.6,7 The
predicced levels are presented in Figure 2. It should be remembered that
this prediction was based on a single acceleration history measurement and
that the shock spectra presented nust be viewed as being the approximate
response that could be expected (rom transients of similar magnitudes,
frequencies, and durations.

2.3 EN. _.NE START CARTRIDGES AND IGN1TERS

U

L it A I A G U S O

Da:: otained from both UpSTAGE 4 and Spartan.8 gas generator igniters g
were used for these predictions. Sparter data were sbtained from trans- 35
ducers located 30 inches (762 mm) away from the shock source. These data were
modified to account for distance and joint attenuation by procedures outlined
in Reference 9. The data obtainad from the UnSTAGE Experiment were from loca-
tions between 5 and 10 inches (147 to 254 mm) from the igniters, sc were simply

2

i

L, -

redrawn. It is predicted that engine start cartridges and igniters will pro- 1]
duce shock levels whose spectra lie within the envelope of the curves presented
in Figire 3.

b INLET COVEL

7h7  device is cnusidered to be similar to a pin puller. Information on pin
.. ...€rs was obtailned from Reference 2. The maximum spectra calculated from E
~ansducer outputs located from 5 to 10 inches (127 to 254 mm) from the pin :
pullers during four different tests are shown in Figure 4. Note that for two
of these tests, spectra were calculated using 2% damping (magnification
} factor Q=25). It is predicted that the shock produced by releasing the inlet
cover will generate a spectrum that lies within the envelope shown in Figure 4.

2.5 VALVES

The valves were described as the Conox type where a piston drives a ram;,

- breaks a pressure disc, etc. Valves ace activated by high pressure gas fed
by supply lines. Sizes ranged {rom 1/4 to 1/2 inch (6.35 to 12.7 mm). Data
from valves of this type were difficult to obtain. Preliminary test results
from Viking 3/4-inch (19-mpn.) valves, as presented in Reference 9, were used

T S L R TN S R G I AR

YRS

7 e’ Wk R A 0 Lo A M e e BT D e kB

for the prediction. Results showing the envelopes from 5 identical firings é

are presented in Figure 5. g

¥

It is of particular interest to note the large difference in levels due to =

the mounting orientation. Much higher levels were cbtained when the piston i

i . kg

axis was parallel to the mounting surface than when it was mounted perpendic- =

ular to it. &

e

Due to the limited amount of information obtained and the rather surprising &

¢ results of the data presented, it is recommended that this prediction be . g

v 2d with caution. %
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3., TEST SIMULATION TECHNIQUES

Methods of shock simulation have progressed through the years, but most

are still far from adequate. Twenty to thirty years ago numerous apparatus 3
were developed to simulate shocks occurring from bench handling, transpor- .
tation (aircraft landings, forklift drops, impacts from hard-sprung trucks,
parachute drops, etc.), and from various equipments which generate their own
shock enviromments, such as large guns and catapult~launched aircraft.

Missiles and space vehicles, with delicate electronic packages, led to
development of a new generation of shock generating devices and simulation
techniques. Complex transients generated by these devices could not be
duplicated by any of the existing classical pulse producing devices, such 3
as drop testers. The solution was to utilize shcck spectra conversicn :
techniques whereby the shock spectrum of a complex transient could be 3
enveloped by the shock spectrum of a classical pulse (half sine, terminal i
peak sawtooth, ramp, etc.). The electrodynamic shaker, through shock )
synthesis techniques, also came into widespread usage as a shock machine.

The rationale for using a test that duplicates a shock spectrum rather than s
the acceleration history of the input is stated as: "A component subjected ;
to a shock whose shock spectrum is the same as the shock spectrum obtained

from the actual environment has been subjected to the same loading."

This statement is rarely true. The following paragraphs in this section

will attempt to explain some of the problems encountered in specifying and -
accomplishing tests which simulate shocks generated by pyrotechaic devices,

3.1 PYROTECHNIC SHOCK )

A pyrotechnic shock is generated when an explosive device is initiated,
These devices, in addition to those mentioned earlier, include separation
nuts and bolts, cable and tube cutters, squib operated switches, and vehicle
or fairing separation systems employing flexible linear shaped charges, mild
detonating fuzes, etc. The magnitude of the shock generated by each type of
device varies greatly. However, there is one common characteristic of all
of these. The shocks are caused by an almost instantaneous release of
ene~gy. The outputs from transducers located close to the devices indicate

v

~' yrt duration transients of high amplitude and frequency.

Caution must be used in making blanket statements about the characteristics
of pyrotechnic shock. Figures 6 and 8 show the acceleration response of
two accelerometers located at opposite ends of a Spartan missile. The
transients were generated by detonating 25 grains per foot flexible linear
shaped charge, which accomplishes vehicle separation.l10 Almost instan-
taneous peak loading is indicated near the separation plane (Figure 6),
while 175 inches (4.4 m) away the input spectrum is completely masked by
the 1,000 Hz structural resonance (Figure 8). It would be difficult to
recognize the curve chown in Figure 8 as resulting from a pyrotechnic
event even though it i1s just as much a pyrotechnic transient as the curve
shown in Figure 6. The test apparatus used to simulate the 93,000 g,

6
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0.2 ms spike (Figure 6) would undoubtedly be different from the one used te
simulate the 329 g, 100 ms decaying sine (Figure 8). The point being made
is that the test apparatus should be selected for its ability to reproduce
the input, and not solely on its shock spectra reproduction capabilities.

Some conclusions can be drawn by examining the shock spectra plots of these
two inputs. TFor quite some time experimenters have stated that time

history pulses are overtests for pyrotechnic shocks because all time history
pulse shock spectra have an initial slope of +6 dB/octave and the spectra
from pyrotechnic transients exhibit slopes greater than +9 dB/octave. Con-
sequently, enveloping a pyrotechnic shock spectrum with a pulse shock spectrum
results in an overtest at the lower frequencies,ll-13 It is easily

seen that enveloping the spectrum presented in Figure 7 (15 dB/octave rise)

or the one in Figure 9 (26 dB/octave rise) with a pulse spectrum having a 6
dB/octave rise will certainly result in an overtest. There are many pyro-
technically generated shock spectra, however, that can be fitted rather well
witb the spectra from time history pulses. Also, the number of zero

crossings should be considered. Time history pulses do not cross zero

whereas pyrotechnic pulses will cross zero several times. Figures 10,
12, and 14 are examples.

It is worthwhile to mention that the shock spectrum of the Dirac function also
has a slope of +6 dB/octave. Shocks having this characteristic are ones

of infinite magnitude and infinitesimal duration. Figure 6 is a plot of

the output of an accelerometer located 5 inches (127 mm) from a shock source.
Maximum response levels at the shock source would undoubtedly be of even
greater magnitude and shorter duration, and shock spectra generated from them
would approach an initial slope of +6 dB/octave. If the acceleration history
at the source did, in fact, resemble the Dirac function, and if it were
possible to generate pulses of these levels and durations, then a test using

a pulse to simulate the actual pyrotechnic loading would be a good approach.

The transients shown in Figures 10, 12,and 14 are extremely oscillatory aand
do not in any way resemble a single pulse, even though shock spectra gener-
ated from them can be enveloped rather nicely with typical pulse spectra
(see Figures 11, 13,and 15). Using classical pulses to simulate these tran-
sients has serious drawbacks; numerous investigators have arrived at the
same conclusion.l4-16 The abstract from Mr. J. Garibaldi's paper

presenged at the 43rd Shock and Vibration Symposium sums it up rather
well: 1

"It has long been suspected that the damage potential of shock
pulses can vary with the pulse characteristic even though the
pulses have the same shock response spectrum. A quantitative

test invegtigation was made of the dynamic environment associated
with shock response spectrum inputs created by different time domain
transients. A test device was exposed to three different time tran-

sients: half sine, shock synthesized on vibration exciter, and
pyrotechnic.

The test revealed an 8 to 1 variation in the response
of the test device."
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It must be pointed out that even if the acceieration history from the
actual environment could be exactly duplicated by the test apparatus, E
shaker, drop tester, etc., the response at the part in the pyrotechnic environ- :
ment would still not be duplicated because of dissimilarities in the trans- ii
mission path., 3:

Pulse generating test apparatus or shakers usually consist of a table, 4.
carriage, head, etc., upon which a part to be tested is mounted. The input ;3
pulse is assumed to be uniform over the entire mounting surface and, con- 4,
sequently, the load is applied simul)taneously to every attachment or contacting
point on the unit under test. 1In the real pyrotechnic environment, the in-
put is in the form of tension and compression waves traveling through the
structure and into the part. Thus, all mounting points are not loaded simul-
taneously. Dissimilaritles in impedances between the test apparatus and

actual mounting structures are another source of error. '

e Lpie o5

DO RS
TN

It is assumed that the reader is familiar with shock spectra analysis and
the drawbacks associated with its use for describing responses for other
than single degree of freedom systems. Consequently, problems arising from
using a single degree of freedom model to describe a multi-degree of freedom
system are not covered in this report. Eg

3.2 FAILURES FROM SHOCK LOADING ]

One of the main reasons for conducting shock tests is to determine if equip-

ment will successfully function during and/or after being exposed to an

actual shock environment. In order to specify an adequate test, it is :

necessary to know the equipment and its various failure mcdes. If the test ¢
is an adequate simulation, it must reproduce the same failare that would

occur in actual service. Typically, pyrotechnic shock environments cause

failures in fragile components or those having high natural frequencies.

Actual structural failures are uncommon in this type enviromnment. If the

equipment to be tested does not have components with high naturazl resonant :

frequencies, then a shock test performed on a shaker using synthesis methods :

will probablg produce the same failure as the actual pyrotechnic environment.

Mr. Noble 1 reports on Centaur electronics utilizing cantilever beams in ;

; micro-miniature circuite to take the place of an inductance. The lowest 3

“% natural frequency of these little beams was 8,000 Hz. Utilizing a shaker

Be ! which has severe roll-off above 3 kHz, would probably not produce the same
: failure as the actual environment.

R Tep—

L

(il adha e o)

As mentioned in Section 3.1, duplication of shock spectra does not necessar-
ily mean that failure modes have been duplicated. Classical pulses or time
history pulses have often been called velocity shocks because of their

large velocity content. If the pyrotechnically generated transients shown
in Figures 10, 12,and 14 are examined, it can be seen that they are ex-
tremely oscillatory and that the positive and negative peak accelerations
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are approximately of the same magnitude. This fact is readily apparent in
that the positive and negative shock spectrum are almost identical (Figures
11, 3,and 15). Velocity, the integral of acceleration, is equal to the area
under the acceleration history plot., The areas above and below the abscissa
of pyrotechnic transients are usually approximately equal, and consequently,
their velocity content is negligible. Since the classical pulses are all
one-sided, they all have a large velocity content. If a part is to survive
a pulse shock test, it must have the ability to absorb a large amouat of
energy.

Kuoppamki and Rouchon14 Eeported repeated failures of three small mounting
screws when a part was subjected to a 200-g, l-ms half-sine pulse. Several
static firings were made and no failures were noted. Eight shock tests were
performed on a shaker using shock synthesis methods and no failures occurred
even though the shock spectrum of the shaker response exceeded that of the
half sine by at least 50%. Harpoon actuators failed half-sine tests even
though the shock spectrum of the clamp ring bolt was significantly higher.
Fur.ier insight into these failures may be obtained by reviewing some basic
differences between static and dynamic loading.

1) The velocity of crack propagation is generally much lower than
the velocity of propagation of the shock pulse; consequently,
any cracks that are formed do not have time to grow before the
pulse has passed on and the stress has been removed.

2) Since shock pulses cause large stresses in any one small part
of the specimen a: any one time, fractures may form in one region
quite independently from what may be occurring elsewhere.

3) The dynamic elastic behavior of materials differs considerably
from the static elastic behavior.

Much work has been done with regard to point 3. Terminology for new mater-—
jal properties has been developed; i.e., transition velocity, critical
impact velocity, critical delay time, etc. In general, it is found that
the yield and ultimate stress of materials are increased with increase in
strain rates. For example, the ultimate stress of a mild steel is 50,000
1bs/in? (344740 kPa) under static loading, and 80,000 1bs/in® (551584 kPa)
when subjected to an impact that produces a strain rate of 1,000 inches/
inch/second (25.4 m/m/second) .19 It is easy to see how tests which

produce different strain rates could produce different failure results.

3.3 TEST APPARATUS

Three categories of test apparatus will be discussed in this section: drop
testers, shakers controlled by shock synthesizers, and pyrotechnic shock
c:xtures. Unfortunately, each of the apparatus has serious drawbacks in
pyrotechnic shock simulation. The technique is to choose the appropriate
apparatus for the particular environment and test item configuratiom.
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Pulse generating devices come in a wide range of styles and sizes. Some
machines employ a pneumatically driven table which impacts upon resilient
pads or lead pellets. Other machines are operated by a hydraulic-pneumatic
system and pulse shape and duration are varied by changing metering pins.
Free fall drop testers employ only the force of gravity. These machines have
recently been classified as "drop testers."

The best thing that can be said for these devices for pyrotechnic shock simu-~
lation is that they are in widespread usage. Most dynamic laboratories and
vendors have one or more versions at their disposal. As mentioned in the
previous section, when used to simulate prrotechnic shocks, they usually pro-
duce large undesirable overtests. Numerous electronic boxes nave been
literally destroyed by using these devices to simulate pyrotechnic shock.
Justification for their use can sometimes be made if the unit to be tested

is packaged extremely well, can absorb a large amount of energy, and has no
low frequency resonances.

If the specification is given as a shock spectrum and a test engineer decides
to use a pulse whose spectrum envelopes the requirement, preference should
be given to the terminal peak sawtooth pulse. This is the only pulse whose
positive and negative shock spectra are identical. Thus, it is possible to
do a six axes test in only three drops. Use of other pulses requires that
the part be turned upside down and dropped again in each axis.

Shakers controlled by shock synthesizers have become valuable shock testing
tools. They can be used to simulate low level pyrotechnic shocks. Their
inherent limitations are shaker regonances and maximum accelerations ob-
tainable. Advantages lie in their ability to shape various spectra,
miniuum setup time, and input resemblancs to pyrotechnic transients.

This last point requires further explanation. Numernus synthesizers are on
the market. Each system generates "required" inpu’s in a different manner.
One system utilizes superimposed sine waves while another digital system
uses 7iscrete packets of sine waves, each packet distinctly separated {rom
the one preceding it. These apparatus, while generating the correct shock
spectrum, reproduce a rapid sine test rather than the decaying transient
typical of most pyrotechnic shocks. Other manufacturer's systems produce

a decaying transient similar to the pyrotechnic transients except tnat its
duration is longer and contains more cycles at the locw frequencies. Again,
care must be taken when selecting apparatus to ensure similarity with the
actual input. Compromises must always be made, but choosing a synthesizer
that produces an output in the form of a high frequency decaying transieunt
with a duration less than 100 ms is a far better choice than using one

that produces sine waves. The obvious solution to the above dilemma is to
specify the duration of the shock transient that is to be used to synthesize
a shock spectrum.
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Pyrotechnic shock fixtures have been used for many years. All of these

devices were built specifically to duplicate given pyrotechnic environments.
Unfortunately, since there is such a large range of levels generated by
various pyrotechnic shocks, there is no universal fixture. Existing approaches
include "barrel testers,"l0 "flat plates,"20 "flower pots,"2l etc.

Distinct advantages of these devices are excellent simulation of actual
pyrotechnic loading and their ability to achieve extremely high acceler-
ations and high frequencies. Disadvantages lie in the relatively little
control over spectral shaping, hazards in explosive handling, and the fact
that there are not many existing facilities.

While this approach is undoubtedly the best simulation ¢f pyrotechnic shock
available today, because of the disadvantages mentioned above, it is seldom
used unless there is no other way of performing the test, For instance,

the spectrum requirement of the test described in Referance 10 went to 20,000
Hz and had a peak of 10,000 g--a pyrotechnic shock fixture was thz only device
that could produce this spectrum.

The one exception to the above is the aircraft launch ejection rack. The
launcher is relatively inexpensive and safe to operate. The complex tran-
sient produced by the aircraft ejection launch cannot be duplicated by a
single event and the transient would be extremely difficult to synthesize
using an electrodynamic exciter.22,23 A typical time history and

shock response spectra are shown in Figures 16 and 17.
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4., CONCLUSIONS AND RECOMMENDATIONS

The curves shown in Figures 1 through 5 reflect predicted levels that would
be generated near the specified pyrotechnic device. To derive test criteria
from these data, it will be necessary to

1) Identify the relationship between the pyrotechnic source and
the component with respect to shock path distance, type of
structure, and number of joints between the source and components.

2) Calculate distance and joint attenuation effects for each com~
ponent and draw attenuated shock spectra curves for each
pyrotechnic source to determine which source produces the most
severe environment at the component.

3) Weight the shock spectrum curve that represents the worst environ-
ment for each of the components by the required qualification
margin.

References 2 and 9 delineate various distance and joint attenuation charac-
teristics for numerous structures.

Acceleration transients generated by the devices whose predicted spectra are
shown in Figures 1 through 5 are all extremely oscillatory at distances over
five inches (127 mm) from the source. On the basis of the information pre-
sented in Section 3, it is recommended that components required to operate

in or survive these environments be tested on either pyrotechnic shock fixtures
or shakers programmed by shock synthesizers.
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SHOCK PREDICTION
BOOSTER CLAMP RING
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SHOCK PREDICTION
BATTERIES
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The above curves are plots of the spectra generated from transients of -
similar magnitude and frequency as the transient obtained from the ;
initiation of the UpSTAGE battery as presented in Reference 5, The -
spectra shown were obtained from References 6 and 7. It is pre- ‘

dicted that spectra generated from quick activated batteries will lie

within the envelope of the above curves.
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ENGINE START CARTRIDGES & IGNITERS
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Referenced data were obtained from Spartan and
UpSTAGE tests.

transducers located 30 inches (762 mm) from the

The Spartan test data were from

shock source and were modified to represent
levels that could be expected within 5 to 10
inches (127 to 254 mm) from the source, as ex-
plained in Para. 2.3, It is predicted that
spectra generated from accelerations caused by
engine start cartridges and igniters will lie
within the envelopes of the presented curves.
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SHOCK PREDICTION

INLET COVER
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.. Ref 2, Vol III, Pg 605 (Q=20) from the acceleration transient produced
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within the envelope of the above curve.
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SHOCK PREDICTION

VALVES
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SHOCK SPECTRUM

ZOP-3A FULL SCALE SEPARATION TEST i
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